Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dehydroascorbate reduction.

Identifieur interne : 001249 ( Main/Exploration ); précédent : 001248; suivant : 001250

Dehydroascorbate reduction.

Auteurs : W W Wells [États-Unis] ; D P Xu

Source :

RBID : pubmed:7844111

Descripteurs français

English descriptors

Abstract

Dehydroascorbic acid is generated in plants and animal cells by oxidation of ascorbic acid. The reaction is believed to occur by the one-electron oxidation of ascorbic acid to semidehydroascorbate radical followed by disproportionation to dehydroascorbic acid and ascorbic acid. Semidehydroascorbic acid may recycle to ascorbic acid catalyzed by membrane-bound NADH-semidehydroscorbate reductase. However, disproportionation of the free radical occurs at a rapid rate, 10(5) M-1 s-1, accounting for measurable cellular levels of dehydroascorbate. Dehydroascorbate reductase, studied earlier and more extensively in plants, is now recognized as the intrinsic activity of thioltransferases (glutaredoxins) and protein disulfide isomerase in animal cells. These enzymes catalyze the glutathione-dependent two-electron regeneration of ascorbic acid. The importance of the latter route of ascorbic acid renewal was seen in studies of GSH-deficient rodents (Meister, A. (1992) Biochem. Pharmacol. 44, 1905-1915). GSH deficiency in newborn animals resulted in decreased tissue ascorbic acid and increased dehydroascorbate-to-ascorbate ratios. Administration of ascorbic acid daily to GSH-deficient animals decreased animal mortality and cell damage from oxygen stress. A cellular role is proposed for dehydroascorbate in the oxidation of nascent protein dithiols to disulfides catalyzed in the endoplasmic reticulum compartment by protein disulfide isomerase.

DOI: 10.1007/BF00762777
PubMed: 7844111


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dehydroascorbate reduction.</title>
<author>
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824.</nlm:affiliation>
<orgName type="university">Université d'État du Michigan</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, D P" sort="Xu, D P" uniqKey="Xu D" first="D P" last="Xu">D P Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1994">1994</date>
<idno type="RBID">pubmed:7844111</idno>
<idno type="pmid">7844111</idno>
<idno type="doi">10.1007/BF00762777</idno>
<idno type="wicri:Area/Main/Corpus">001239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001239</idno>
<idno type="wicri:Area/Main/Curation">001239</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001239</idno>
<idno type="wicri:Area/Main/Exploration">001239</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dehydroascorbate reduction.</title>
<author>
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824.</nlm:affiliation>
<orgName type="university">Université d'État du Michigan</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, D P" sort="Xu, D P" uniqKey="Xu D" first="D P" last="Xu">D P Xu</name>
</author>
</analytic>
<series>
<title level="j">Journal of bioenergetics and biomembranes</title>
<idno type="ISSN">0145-479X</idno>
<imprint>
<date when="1994" type="published">1994</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Animals, Newborn (MeSH)</term>
<term>Dehydroascorbic Acid (analogs & derivatives)</term>
<term>Dehydroascorbic Acid (metabolism)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (deficiency)</term>
<term>Isomerases (physiology)</term>
<term>Mammals (metabolism)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Oxidoreductases (physiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Disulfide Reductase (Glutathione) (MeSH)</term>
<term>Protein Disulfide-Isomerases (MeSH)</term>
<term>Reactive Oxygen Species (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide déhydroascorbique (analogues et dérivés)</term>
<term>Acide déhydroascorbique (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Animaux nouveau-nés (MeSH)</term>
<term>Espèces réactives de l'oxygène (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (déficit)</term>
<term>Isomerases (physiologie)</term>
<term>Mammifères (métabolisme)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxidoreductases (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protein Disulfide-Isomerases (MeSH)</term>
<term>Protein-disulfide reductase (glutathione) (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Dehydroascorbic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dehydroascorbic Acid</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>Oxidoreductases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Isomerases</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide déhydroascorbique</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mammals</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide déhydroascorbique</term>
<term>Mammifères</term>
<term>NADH, NADPH oxidoreductases</term>
<term>Oxidoreductases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Isomerases</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Newborn</term>
<term>Glutaredoxins</term>
<term>Oxidation-Reduction</term>
<term>Protein Disulfide Reductase (Glutathione)</term>
<term>Protein Disulfide-Isomerases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Animaux nouveau-nés</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Oxydoréduction</term>
<term>Protein Disulfide-Isomerases</term>
<term>Protein-disulfide reductase (glutathione)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dehydroascorbic acid is generated in plants and animal cells by oxidation of ascorbic acid. The reaction is believed to occur by the one-electron oxidation of ascorbic acid to semidehydroascorbate radical followed by disproportionation to dehydroascorbic acid and ascorbic acid. Semidehydroascorbic acid may recycle to ascorbic acid catalyzed by membrane-bound NADH-semidehydroscorbate reductase. However, disproportionation of the free radical occurs at a rapid rate, 10(5) M-1 s-1, accounting for measurable cellular levels of dehydroascorbate. Dehydroascorbate reductase, studied earlier and more extensively in plants, is now recognized as the intrinsic activity of thioltransferases (glutaredoxins) and protein disulfide isomerase in animal cells. These enzymes catalyze the glutathione-dependent two-electron regeneration of ascorbic acid. The importance of the latter route of ascorbic acid renewal was seen in studies of GSH-deficient rodents (Meister, A. (1992) Biochem. Pharmacol. 44, 1905-1915). GSH deficiency in newborn animals resulted in decreased tissue ascorbic acid and increased dehydroascorbate-to-ascorbate ratios. Administration of ascorbic acid daily to GSH-deficient animals decreased animal mortality and cell damage from oxygen stress. A cellular role is proposed for dehydroascorbate in the oxidation of nascent protein dithiols to disulfides catalyzed in the endoplasmic reticulum compartment by protein disulfide isomerase.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7844111</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0145-479X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1994</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bioenergetics and biomembranes</Title>
<ISOAbbreviation>J Bioenerg Biomembr</ISOAbbreviation>
</Journal>
<ArticleTitle>Dehydroascorbate reduction.</ArticleTitle>
<Pagination>
<MedlinePgn>369-77</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Dehydroascorbic acid is generated in plants and animal cells by oxidation of ascorbic acid. The reaction is believed to occur by the one-electron oxidation of ascorbic acid to semidehydroascorbate radical followed by disproportionation to dehydroascorbic acid and ascorbic acid. Semidehydroascorbic acid may recycle to ascorbic acid catalyzed by membrane-bound NADH-semidehydroscorbate reductase. However, disproportionation of the free radical occurs at a rapid rate, 10(5) M-1 s-1, accounting for measurable cellular levels of dehydroascorbate. Dehydroascorbate reductase, studied earlier and more extensively in plants, is now recognized as the intrinsic activity of thioltransferases (glutaredoxins) and protein disulfide isomerase in animal cells. These enzymes catalyze the glutathione-dependent two-electron regeneration of ascorbic acid. The importance of the latter route of ascorbic acid renewal was seen in studies of GSH-deficient rodents (Meister, A. (1992) Biochem. Pharmacol. 44, 1905-1915). GSH deficiency in newborn animals resulted in decreased tissue ascorbic acid and increased dehydroascorbate-to-ascorbate ratios. Administration of ascorbic acid daily to GSH-deficient animals decreased animal mortality and cell damage from oxygen stress. A cellular role is proposed for dehydroascorbate in the oxidation of nascent protein dithiols to disulfides catalyzed in the endoplasmic reticulum compartment by protein disulfide isomerase.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wells</LastName>
<ForeName>W W</ForeName>
<Initials>WW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Michigan State University, East Lansing 48824.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>D P</ForeName>
<Initials>DP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA-51972</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DK-44456</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bioenerg Biomembr</MedlineTA>
<NlmUniqueID>7701859</NlmUniqueID>
<ISSNLinking>0145-479X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6730-29-6</RegistryNumber>
<NameOfSubstance UI="C000820">semidehydroascorbic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.5.4</RegistryNumber>
<NameOfSubstance UI="C023927">monodehydroascorbate reductase (NADH)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.4.2</RegistryNumber>
<NameOfSubstance UI="D011490">Protein Disulfide Reductase (Glutathione)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.5.1</RegistryNumber>
<NameOfSubstance UI="C020666">glutathione dehydrogenase (ascorbate)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.-</RegistryNumber>
<NameOfSubstance UI="D007535">Isomerases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.4.1</RegistryNumber>
<NameOfSubstance UI="D019704">Protein Disulfide-Isomerases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y2Z3ZTP9UM</RegistryNumber>
<NameOfSubstance UI="D003683">Dehydroascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000831" MajorTopicYN="N">Animals, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003683" MajorTopicYN="N">Dehydroascorbic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007535" MajorTopicYN="N">Isomerases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008322" MajorTopicYN="N">Mammals</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011490" MajorTopicYN="Y">Protein Disulfide Reductase (Glutathione)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019704" MajorTopicYN="N">Protein Disulfide-Isomerases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>67</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1994</Year>
<Month>8</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1994</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1994</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7844111</ArticleId>
<ArticleId IdType="doi">10.1007/BF00762777</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 1965 Jan;96:157-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14285258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jun 25;30(25):6088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1829380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1952 Jul;38:451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12997121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1974 May 1;139(5):1084-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4825242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1964 Sep 5;203:1068-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14223080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Aug 25;254(16):7558-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">38242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1958 Mar;27(3):598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13535645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Sep;239:PC3114-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14217906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Jun 30;57(7):1069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2544299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1981 May 14;659(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7248315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jul 25;268(21):15531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8340380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hoppe Seylers Z Physiol Chem. 1967 Mar;348(3):323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4385354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Nov 1;290(2):458-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1929413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1981 Mar;89(3):889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7287643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia. 1967 May 15;23(5):362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4863928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1993;66:149-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8430514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 Aug 25;245(16):4178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4396068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1961 Jun 10;50:62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13787201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1989 Apr;190(4):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2928350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Sep 11;257(5076):1496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1523409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 1956 Nov-Dec;1(6):557-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13404732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hoppe Seylers Z Physiol Chem. 1970 Jul;351(7):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4317422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9360-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1681551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Oct 25;260(24):12942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3932336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1928;22(6):1387-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16744155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Jun 25;263(18):9050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2454232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1938 Aug;32(8):1356-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16746761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1964 Jul 8;89:189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14213005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1985 Apr 29;333(1):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3995284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1913-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2000395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1978 Jul 28;83(2):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">212056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1992 Nov 17;44(10):1905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1449510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Sep 15;265(26):15361-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2394726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1980 May 30;94(2):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6994727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1984 Feb 14;797(2):266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6141808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1985 Mar 29;839(1):119-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3978119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol Scand Suppl. 1970;356:1-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5279048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4656-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2052548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1941 Mar;35(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16747320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Physiol Acad Sci Hung. 1965;27:303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14336628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Nov;86(22):8727-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2813421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1927;21(3):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16743885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1977 Oct;183(2):563-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">921277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7060-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1496000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;107:281-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6503714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1974;56(9):1255-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4451675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Xu, D P" sort="Xu, D P" uniqKey="Xu D" first="D P" last="Xu">D P Xu</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Wells, W W" sort="Wells, W W" uniqKey="Wells W" first="W W" last="Wells">W W Wells</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001249 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001249 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7844111
   |texte=   Dehydroascorbate reduction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7844111" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020